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Abstract -- Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to

examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning,

high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were

investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with

those obtained by planar Mie scattering. For one injector, further comparison is also made with data

obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and

fuel injector configurations are readily discernible. An examination of the data has shown that a direct

determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this

study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating

fuel spray patternation under actual combustor conditions.
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INTRODUCTION

The abatement of pollutants generated by liquid-fueled gas turbine combustors is increasingly becoming a

major issue to government agencies and industries faced with meeting new and impending environmental

restrictions and regulations. Essential to meeting these demands, and of critical concern in the design of

advanced high pressure liquid-fueled combustors and fuel injectors, is a detailed understanding of the

fuel/air mixing process, droplet size and velocity distribution, and fuel density distribution pattern

(patternation) encountered in these high pressure combustor concepts. Current diagnostic methods are

inadequate to address these issues in the complex flowfields and harsh conditions encountered in present



day combustors. Future designs present even greater obstacles with nass flows expected to reach nearly

200 Ibis and pressure ratios ranging from 60:1 to 100:1. Recent adv;mces in laser technology and optical

diagnostic techniques (Taylor, 1993; Rothe and Andresen, 1997) ha,;e provided the tools, and the latest

window technology (Hicks, et al., 1995) has provided the capability to explore this previously inaccessible

and harsh environment.

Until recently, actual combustor flowfields were inaccessible to highly sensitive and specific optical

probing techniques. Most previous optical measurements were accomplished using simple gaseous flames

at atmospheric (Hanson, 1986) or low pressure (Williams and Fleming 1994). Only recently have

investigations been conducted at higher pressure (Battles and Hanson, 1995) but these have been limited to

approximately 1.01 MPa and were restricted to simple gaseous fuels. Later experiments were performed

with simple liquid fuels in flames approaching 1.01 MPa (Allen et El., 1995), and in internal combustion

engines near 2.03 MPa (Andresen et al., 1990). More recently, optical probing of simple gaseous flames,

but at greatly elevated pressures near 6.08 MPa (Davidson et al., 1996) have met with some success. To

elucidate liquid spray behavior, previous PLIF studies employed exciplex fluorescence techniques (Melton

and Verdieck, 1984) but have limited application due to restriction., imposed by temperature limitations and

the quenching of the excited state complex by molecular oxygen. Other studies incorporated variants of

both PLIF and PDPA (McDonnell et al., 1995) in which a liquid Sl:.ray, comprised of methanol doped with

fluoreseein was examined for patternation but these experiments were executed under non-combusting,

atmospheric pressure conditions. Only very recently have experim :nts been implemented which utilize thin

film window cooling technology that allows nonintrusive diagnostics to probe and observe in real-time,

actual combustor environments with kerosene-based fuels at presst_res and temperatures approaching 1.5

MPa and 2000 K respectively (Locke et ai., 1996; Locke et aL, 1996).

Efforts are underway at NASA Lewis to integrate a number of advanced diagnostic methods to study the

performance of next generation combustors and combustor subcontponents. In this study, PLIF imaging of

fuel and planar Mie scattering from fuel droplets are used to exarn ne the fuel patternation resultant from

advanced fuel injector concepts for liquid fuel burning, high press'are gas turbine combustors for aerospace

applications. Three different fuel injector concepts fitted into unictue, optically accessible flametubes were

investigated. These injectors were examined under a broad range 3f operating conditions.



Acomparisonofpatternationresultsismadeforeachofthreedifferentmeasurementtechniques.

Differencesinspraypatternsatdifferentconditionsandfordistinctfuelinjectorconfigurationsarereadily

observable.Anexaminationofthedatahasalsoshownthatadirectdeterminationofsprayangleatrealistic

conditionsispossible.ThecurrentstudyisthefirstapplicationofthePLIFtechniquetoachievefuel

patternationusingakerosene-basedfuelattheseextremeconditionsofhighmassflow,pressure,and

temperature.Furthermore,theresultsobtainedinthisstudydemonstratetheapplicabilityandusefulnessof

nonintrusiveopticaltechniquesforinvestigatingfuelspraypatternationunderactualcombustorconditions.

EXPERIMENTALAPPARATUSANDPROCEDURES

Facilities

Three different fuel injectors were installed in two unique, optically accessible combustors. The first is a

21.6 cm x 21.6 era, radially-staged gas turbine combustor or "sector rig", and is designed for testing larger,

multi-component, injector systems. The second combustor is a 7.6 cm x 7.6 cm, flametube designed for

single component injector testing. Typical rig operating conditions for this series of experiments ranged

from inlet temperatures of 533 K - 810 K, inlet pressures of 0.55 MPa - 1.7 MPa (80 psia - 250 psia), and

mass flows of 0.32 kg/s - 0.77 kg/s for the flame tube, and 1.13 kg/s - 3.63 kg/s for the sector rig.

Equivalence ratios (_) for both combustors ranged from 0.30 to 0.60. The window housings are equipped

with UV-grade fused silica windows that measure 3.8 cm axially, 5.1 cm in the cross flow direction, and 1.3

cm thick. To maintain structural integrity at test conditions, the inner surface of the windows is cooled by a

thin film of nitrogen, resulting in inner surface window temperatures typically less than 977 K.

The exit plane of each injector projected approximately 6 mm into the window viewing area. The

optical detection coordinate system defines x as the azimuthal or horizontal direction with positive x to the

right when looking upstream, z is the axial coordinate, with z = 0 at the injector exit plane and positive z in

the downstream direction, y is the radial or vertical coordinate with positive values above the fig center or

zero point.

Optics and Instrumentation

A Continuum ND 81-C Nd:YAG laser pumping a ND 60 dye laser/UVX ultra-violet wavelength extension

system generated the wavelengths necessary for simultaneous measurement of fuel via PLIF and planar Mie



scattering.The10Hz, 750 mJ YAG output at 532 nm pumped the dye laser operating with Rhodamine 590

dye, resulting in 190 mJ output at 563 nm. The UVX doubled the dye output to obtain the 281.5 nm UV

output, which was maintained at 15 mJ throughout these experiments. A pellin-broca prism separated the

doubled dye output from the residual dye fundamental. The bandwi,:lth of the selected wavelength was 1.0

cm l as measured by a Burleigh UV wavemeter, with pulse widths of 7 ns at full width half maximum

(FWHM).

The laser beam transport system, described in detail elsewhere (Hicks et al., 1997) delivered the laser

beam to the test cell by a series of remotely controlled, high damage threshold mirrors. Since the UV laser

beam has a divergence of only -5 mrad, it was allowed to freely expand over the full distance of the optical

path which ranged from 12 m for the flametube to 25 m for the sector rig. The laser beam was formed into

a sheet using a 3000 mm focal length, UV grade cylindrical lens and was directed vertically into the

optically accessible combustor. The sheet size at the laser focal volume was approximately 22 mm by 0.3

mm.

Figure 1 illustrates the optical detection setup at the test section The planar fuel fluorescence and

planar Mie scattering were collected simultaneously normal to the incident laser sheet using two Princeton

Instruments gated and intensified, 16 bit, CCD (ICCD) cameras, each with a 384 x 576 pixel array. The

intensifiers, synchronously triggered with the laser pulse, had a gate width of 75 ns. The cameras were

equipped with Nikon 105 mm ff4.5 UV Nikor lenses focusing each camera on a plane coinciding with the

incident laser sheet passing through the test section center (our defined zero point, or x = 0 position). A

computer program was written to coordinate remote positioning of the two cameras and the incident laser

sheet. The filters used for collecting the fuel fluorescence comprised a WG-305 glass filter and a narrow

band interference filter with a peak transmittance of 16% at 315 nm and a FWHM of 10.6 rim. The Mie

scattering was imaged through an interference filter centered at 283 nm with a 2 nm FWI-IM and

transmission of 6%. Due to weak signals, the fluorescence camera's array was binned into blocks of 8 x 8

pixels, effectively reducing the array size to 48 x 72 super-pixels. All images presented here were collected

by on-chip averaging the fluorescence or Mie signal on the detectcr array for fifty laser shots. The incident

laser sheet was then traversed across the flow in 1 mm increments from -20 mm to +20 mm about the

defined zero point resulting in 41 discrete images for that particular injector and condition.



It wasnecessarytoperiodicallycleanthedetectorwindowsduringtestingofoneofthefuelinjectors

duetoabuild-upoffueldeposits.Thiswasaccomplishedbyremotelyablatingthedepositsfromboth

detectorwindowsbysweepingafocused50mJsheetof532nmoutputprovidedbyaContinuum Surelite

Nd:YAG laser. The laser insertion window was cleaned by the 281.5 nm incident laser sheet which was

scanned continuously over the window's width.

Figure 1 also shows the placement of a two-component Aerometrics Phase/Doppler Particle Analyzer

(PDPA) used to measure the light refractively scattered by the fuel droplets (30 ° forward scatter). Both the

transmitter and receiver were aligned 15° from a horizontal plane to maximize the measurement locations

accessible within the windowed test section. Transmitting and receiving optic focal lengths were both 500

mm, and the transmitter beam separations were 40 mm. Since the PDPA obtains measurements from a

small volume of the flow field, the measurement location was traversed throughout the accessible flow field

to characterize the spray. Droplet size distributions, as well as the droplets' axial and tangential velocity

components, were acquired by moving the measurement location along the transmitter propagation direction

(15 ° from horizontal). Axial and radial velocity components were measured while traversing 105 ° from the

horizontal.

Image Analysis

A color bar comprising twenty-five colors, plus black (low intensity) and white (high intensity) is used for

image analysis purposes. Each color accounts for approximately 10 counts in the linear span from 0 to 255

counts of signal. Black represents the lowest two counts in signal while white represents the highest two

signal values. Although the images are corrected for random high noise spikes, they are not corrected for

laser sheet energy distribution.

Each image in the subsequent figures shows the fuel patternation from the viewpoint of looking

upstream toward the fuel injector (cross flow, or end-on views). These views were obtained by configuring

the set of 41 z-y plane images accrued at each test point into a three dimensional array called an image

stack. The points between successive images in the stack are interpolated to obtain a smoothed 3-d profile.

The resultant image block can then be sliced and observed from any chosen perspective. An example of this

process is shown in figure 2. The left hand side of the figure display fuel PLIF images obtained using the



LDI injectorassemblyfittedintothesectorrig.Forthepurposeofdemonstrationandforsimplicity,onlya

selectfewofthesez-yplaneimagesareshown.Therighthandsideoffigure2showsrepresentative

compositecrossflowimagesobtainedafterimplementingthisprocedure.

All imagesineachimagestackarescaledtogethersothatthehighestsignallevelrepresentsthe99th

percentile.Imagesaredisplayedinthisfashioninordertohighlightthelowerlevelstructurethatwould

otherwisebelostinthe"glare"ofotherhigherintensityfeatures.T_eliminateinterferenceattributableto

OHfluorescencecontributions,allPLIFmeasurementswereaccomplishedusinganon-resonant

wavelength,typically281.5nm.

RESULTSANDDISCUSSION

Imaging Measurements

Figure 3 shows a comparison of fuel PLIF cross-flow views for the three different fuel injector concepts

examined in this study. Each image is scaled independently because they are derived from different

injectors and taken at different operating conditions. The left-most two images were acquired using the

flametube. The right-hand image was obtained using the radially sl aged sector combustor. Immediately

apparent from the figure is that the left image shows a highly non-uniform fuel distribution, whereas the

middle and the right images each display a high degree of symmetry. These images, acquired at the same

axial location, approximately 10 mm from their respective injector exit planes, were generated by the

previously described computational technique and demonstrate its applicability to diverse experimental

conditions and test rig configurations. The crossed white lines in the two left most images denote that

particular test rig's center line. These images provide a ready method to display the vast differences

between individual fuel injector operating characteristics and perfcrmance at design conditions.

A sequence of cross-flow, or end-on, fuel PLIF images is shown in figure 4. The images were obtained

for a lean, dual-circuit (pilot and main) fuel injector concept with c,nly the pilot operating, burning JP-8 jet

fuel. The injector was installed in the flametube test rig with test conditions of 644 K inlet air, 558 kPa (81

psia) combustor inlet pressure and overall equivalence ratio of 0.4,_5. The five images show the

progression downstream from the injector exit plane by the indicated distance increments. These images

readily show fuel (dark ring) emerging from the injector (located at z = 0, not shown) in a symmetrical



pattern.Immediatelyevidentfromtheimageistheabsenceoffuelfluorescencesignalatthemiddleofthe

injector,denotedbythecross-hairs.Midwayfromthecenterineachimage,athickdarkmassoffuelis

seentoexpandastheapparentviewingpositionmovesfurtherdownstream(fromlefttoright).

A fortuitousconsequenceofimaginginthismanneristheabilitytoutilizeasimpletrigonometric

expressionandafinelydividedrulertodeterminethefull sprayangleforeachcondition,thus,

ct = 2 tan "1 (Ah/Az), where Ah = t/2 (Di+t - D_) is the fuel ring diameter increase as measured from a

predetermined position between successive images. Az is the corresponding axial displacement between

these same two images. The spray angle values calculated in this manner agreed well with those determined

theoretically. This agreement generally held true throughout these experiments.

Another feature found in this and subsequent images is the slight thickening of the observed fuel ring on

the side of the camera acquiring the images, in this case the left hand side. This feature may be attributed to

extinction effects, which include incident laser sheet scatter and absorption by fuel droplets, and/or

fluorescence trapping. Additionally, the apparent decrease in fluorescence intensity in the last image, z =

12 mm, has two possible causes. The first is the fall off in incident laser sheet energy, solvable by

normalizing the images for laser sheet energy distribution. The second cause could be the combustion

process consuming the available fuel resulting in a markedly decreased fluorescence level.

Figure 5 presents a sequence of cross-flow planar Mie scattering images obtained for the same injector,

but with both pilot and main operating. Test conditions were: 682 K inlet air, 1.6 MPa (232 psia)

combustor inlet pressure and overall equivalence ratio of 0.3IM. As in the previous figure, the five images

progress from left to right, downstream from the injector exit plane by the indicated distance increments.

These images, shown in a contour format, distinctly show fuel emerging from the injector (located at z = 0,

not shown) in a nearly symmetrical ring formation. Expansion of the fuel ring is again observed in the

sequential images from which an accurate fuel spray angle calculation can be made. Noticeably absent from

the images in this figure is the Mie scattering from the main. Only the scatter from the pilot is observed.

This observation can be explained by reasoning that in this design and at these conditions, the main has

greater atomization efficiency than the pilot.



Also in figure 5, the planar Mie scattering intensity is observed _o drop off beginning in the z =15

image. This can be attributed to two possible effects. The first, as in the fuel PLIF case, is a fall-off in

incident laser sheet energy, which again, could be resolved by normalizing the images for laser sheet energy

distribution. The second potential cause is a scarcity of fuel drops in this downstream region due to

vaporization.

Figure 6 shows a comparison of simultaneous Fuel PLIF and planar Mie scattering results for the two-

circuit fuel injector with both pilot and main operating, burning JP-8 jet fuel. The images, acquired at the

same axial location at flow conditions of: Tinkt= 682 K, Piglet= 1.6 MPa (232 psia), _ = 0.304, demonstrate

the significance of comparing these two techniques. Both images display uniform fuel patternation,

however, the PLIF image shows two distinct fuel sprays (pilot and main), appearing here as dark rings

separated by lighter regions of little or no fuel fluorescence. Conversely, the Mie image exhibits scattering

only from the pilot. Since PLIF imaging captures fluorescence from both the liquid and vapor phases of

fuel and planar Mie imaging collects scattering only from the liqukl, a comparison of the two techniques

would be a valuable tool to investigate the fuel vaporization process at real conditions.

PDPA Measurements

PDPA measurements were obtained coincidentally with fuel PLIF and Mie measurements for the two-

circuit lean injector concept with only the pilot operating. At each condition, PDPA measurements were

attempted across a full diameter of the flow field. When a full trawrse was impossible due to optical or

time constraints, half of the flow field diameter was characterized. Approximately 8000 droplets were

measured at each location. The fuel PLIF images for this injector exhibited a high degree of symmetry, so

it was assumed that a single diameter was representative of the spray for that axial location. Despite the use

of a focused, frequency-doubled Nd:YAG light sheet to maintain optical access during the tests, only a few

points were measured at the lowest inlet air temperature condition due to the accumulation of fuel deposits

on the combustor windows. Measurements were more successful at mid-range inlet temperatures, with 60-

90% of the droplet measurement attempts typically passing the software validation criteria.

Figure 7 shows the imaged results for this injector fitted into the flametub¢ test rig, acquired

simultaneously at approximately 1.27 cm downstream of the injector exit plane, by fuel PLIF and Mie



scattering. The white lines at -15 ° and -105 ° show the paths along which PDPA mass flux data was

obtained. Figure 7 also presents a drop graph that plots the normalized signals from each of the three

techniques. The PDPA data along the -15 ° line is indicated by solid symbols whereas the corresponding

data along the -105 ° line is shown by the open symbols. It is immediately clear that there is close

agreement between the results for the 3 different mass flux measurements along the -105 ° line. Along the

longer -15 ° line a close agreement is seen on the positive x-axis; however, along the negative x-axis the

PDPA data virtually falls off to zero between x = -5 mm and x = -20 mm. This reduction in data rate is

attributed to obscuration of the PDPA receiver, which has been observed in high pressure vaporizing sprays

(Zaller and Klein, 1994).

In general, there is excellent agreement between the fuel PLIF, Mie scattering and PDPA data for this

injector. There appears to be a slight shift of approximately 1 mm along the positive x-axis in the imaged

data with respect to the PDPA data. However, this offset is insignificant when considering that each

measurement system was installed individually and was independently aligned. Future work will

incorporate a single device which will allow repeatable and coincident alignment of each diagnostic

technique, thereby achieving the same zero position.

SUMMARY AND CONCLUSIONS

This study has presented images depicting the fuel patternation of lean burning injector concepts operating

at conditions of high pressure and temperature. These images, obtained by simultaneous application of

PLIF and planar Mie scattering diagnostic techniques, demonstrate the versatility of the image stacking

technique to achieve cross-flow views. Using this technique we are able to view upstream and analyze

individual fuel injector performance. Fuel PLIF imaged both liquid and vapor fuel but is incapable of

distinguishing between the two. The planar Mie scattering images denoted the region in the flowfield where

liquid was present. The simultaneous application of these techniques provide complimentary methods to

plot liquid fuel patternation. This study indicates that further application of simultaneous fuel PLIF and

planar Mie scattering could prove valuable in the study of the fuel vaporization processes at actual

combustor conditions.



Comparisonoftheimagedresultswiththose acquired from PDPA measurements showed a close

agreement in trends among the three independent measurement tecl" niques. This observation can be used

in future work to develop a procedure to correlate the data obtained from one technique with that from

another. In this manner, qualitative image data can be "quantified" by using the quantitative PDPA mass

flux data as a reference measurement.

Studies are underway to institute image corrections for incident laser sheet inhomogeneities similar to

those recently reported for gaseous-fueled, atmospheric pressure flames (Georgiev and Alden, 1997).

However, obstacles not encountered by bench top atmospheric pressure flames must first be surmounted.

These impediments include inaccessibility during testing, and the fact that incident laser sheet insertion and

all diagnostics must occur through windows of questionable transparency due to the potential accumulation

of flow field depositions with some injector designs at certain inlet conditions.

For the imaging work, no attempts were made to address extinction effects attributable to laser sheet

scatter or non-resonant absorption by the droplets. Although this is only an issue at the lower inlet

temperature conditions where there exists a significant concentratioa of fuel droplets and the effects

appeared minimal in this study, extinction effects pose a significant challenge to applications of this

diagnostic technique for this and future higher pressure venues and 'nust be investigated more thoroughly.
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Figure Captions:

Figure 1. Experimental setup for simultaneous PLIF and Mie imaging, and PDPA analysis.

Figure 2. Example of image stacking of sequential z-y plane fuel PLIF images taken in 1 mm increments

across the combustion flowfield to obtain cross-flow (X-Y plane) views. The injector was installed in the

radially-staged sector rig. Test conditions are: L = 281.5 nm, Tinier= 527 ° C, Tinier = 1.46 MPa, q_ = 0.42.

Flow is from left to right.

Figure 3. Fuel patternation via PLIF approximately 10 mm downstream from three lean-burning injector
concepts for low emissions eombustors. Flow is out of the page.

Figure 4. Sequential cross-flow fuel PLIF images obtained in a combusting flow displaying resultant

patternation for two-circuit injector with only the pilot operating. _ae z dimension gives the distance from
the fuel injector dome exit plane. The crossed lines demark the defined injector center point. Test

conditions are: Z= 281.5 nm, "1"3= 371°C, Pinlet = 0.56 MPa, • = 0.445.

Figure 5. Sequential cross-flow planar Mie scattering images obtained in a combusting flow displaying

resultant liquid fuel patternation for two-circuit fuel injection. Note the absence of scattering from the outer
fuel circuit. Test conditions are: _. = 281.5 nm, Tinlet= 419°C, Pi,am = 1.6 MPa, _ = 0.304.

Figure 6. Comparison of simultaneous planar Mie and Fuel PLIF images acquired at the same axial
location for a two-circuit fuel injector with both circuits operating. The lack of scattering from the outer

circuit in the Mie image reveals that at this position, the effluent is vapor whereas the inner circuit effluent

is still a liquid. Test conditions are: _. = 281.5 nm, Tinier = 409°C, Pinlet = 1.6 MPa, q_ = 0.304.

Figure 7. Plotted comparison of fuel volume distribution as measured by PLIF, planar Mie scattering, and

PDPA. All data was acquired at the same axial location of 1.27 cm from the fuel injector dome exit plane.

White lines overlaying the images data denote the path along which PDPA measurements were made. Flow
conditions were: _, = 281.5 nm, Tinle t = 343, Pinlet = 0.56 MPa, q_ = (3445.


